MULTIFUNCTIONAL PERENNIAL CROPPING SYSTEMS Design preferences of landowners in central illinois

Erik C. Stanek Sarah T. Lovell University of Illinois at Urbana-Champaign

Todays discussion

- 1. Agroforestry potential in Central Illinois
- 2. The design of agroforestry systems for landowners
- 3. Landowner preferences, motivators, and barriers
- 4. Improving conservation and agroforestry use

Cover & below photo courtesy of Kevin Wolz

We know agroforestry...

...But what are multifunctional perennial cropping systems (MPCs)?

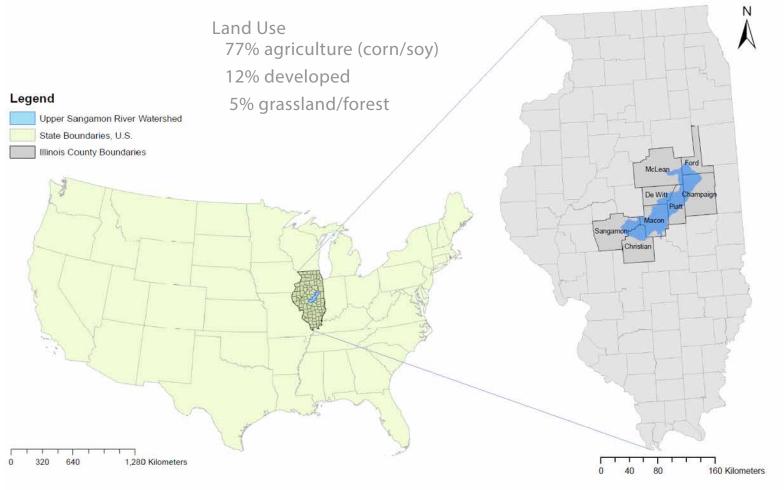
How can we make this a reality for landowners?

Understanding Central IL landowners

- Previous work surveyed ~100 Central Illinois landowners about MPCs
- Highest potential adopters were young, valued conservation, willing to learn.
- Biggest barrier was lack of informationw

Improve information for landowners

Source: Mattia *et al.* 2016, Identifying barriers and motivators for adoption of multifunctional perennial cropping systems by landowners in the Upper Sangamon River Watershed


Research questions and methods

- How can we improve design and in turn advance research?
- What is the preferred agroforestry design?
- What are the motivators and barriers to adopting agroforestry?
- What more information do landowners need?

Design for landowners, with landowners

- 15 landowners within the Upper Sangamon River Watershed
- Landowner ages between 29 to 78
- Eight are full-time farmers of some type

Mattia et al. 2016

Creating MPCs from landowners goals

Initial Meeting

- Visit the land and identify areas to be used
- Understand wants and needs
- Outline goals for MPCs

Source: Nassauer, J.I., Corry, R.C. 2004, Using normative scenarios in landscape ecology

Building Scenarios

- Used normative scenario design
- Plausible and reasonable situations that could and/or should exist in the future.
- Collaborative process to achieve a novel agricultural system

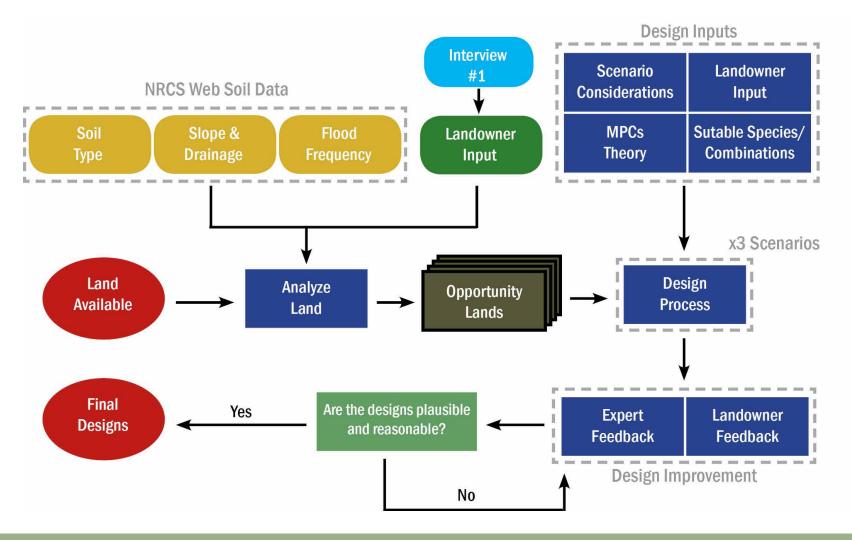
Three scenarios guided design

Production

- High production of woody crops
- Mechanically harvestable
- Simplicity

Conservation

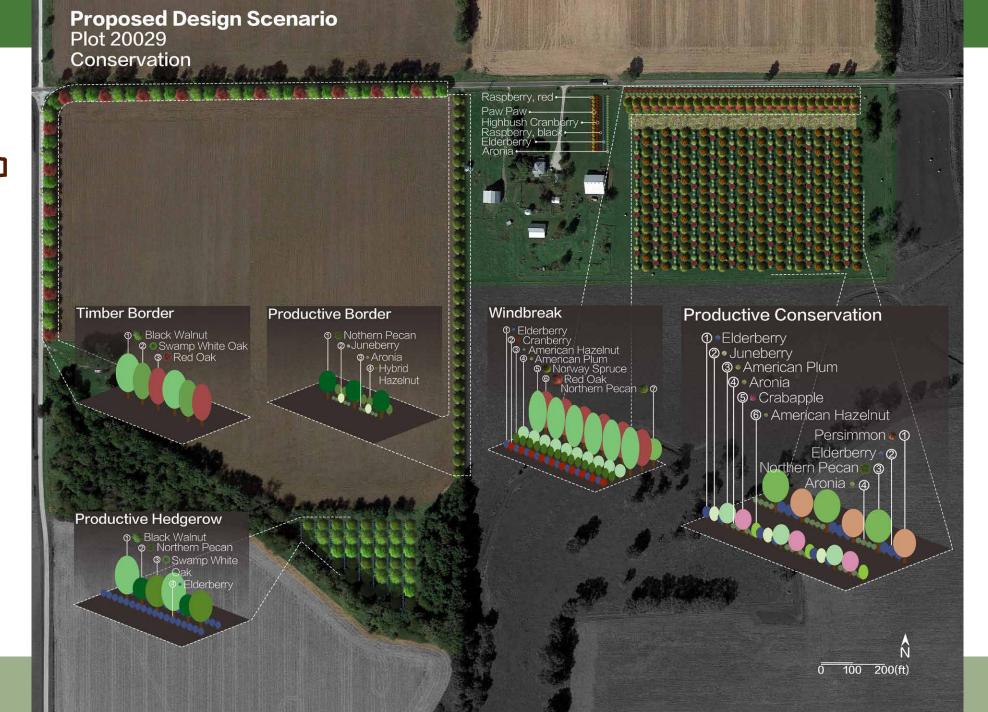
- Use of native species
- High diversity
- Eligible for conservation programs


Cultural

- Visually beautiful
- Recreation and experience
- Research and education

How are the designs created?

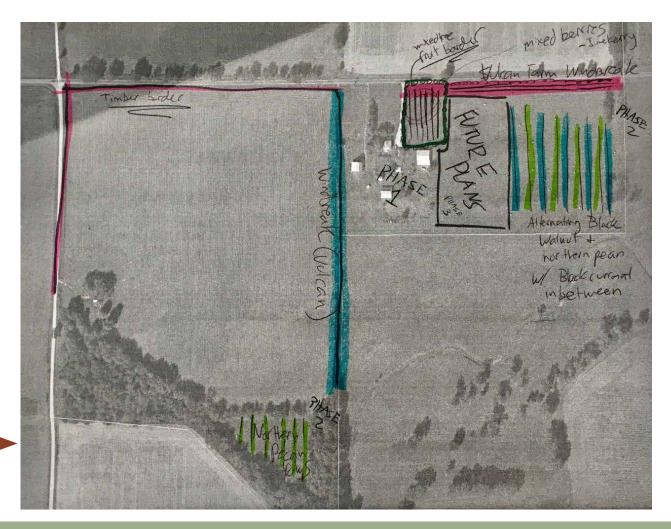
Design workflow aims to meet landowner needs



What do the designs look like?

Conservation

What do the landowners think?


Narrowing in on preferences

Design materials provided

- Designs x3
- MPCs Information Book

Interview #2

 Preferences, motivators/barriers, adoption potential, building an optimal design

Results indicate production is most important

Conservation Cultural Rank Production 8 3 4 3 2 2 10 3 4 10 Interest 3.6 3.2 3.4 score

Preferred design by landowners (rank frequency)

Likert Scale Rating

1	2	3	4	5
Not at all interested would not adopt	Slightly interested, would adopt very little of the design	Somewhat Interested, would adopt some of the design	Moderately interested, would adopt a good amount of the design	Extremely interested, Would adopt most or all of the design

Results show value in working face to face

Likert-scale rating

1	2	3	4	5
Not at all	Slightly	Somewhat	Moderately	Extremely

Higher MPCs familiarity

• Before and after: $2.53 \rightarrow 3.53$

Higher MPCs adoption likelihood

• Before and after: $3.53 \rightarrow 4.13$

Usefulness of the design process

 Supplemental guide was most useful (average of 4.73)

13 out of 15 participants said they plan to adopt MPCs

How much of a barrier/motivator are the following?

0	1	2	3	4	5	6
Not at all	Slight	Somewhat	Moderate	Very	Extreme	Persuades me to adopt or not

Top Motivators

- Growing high-value, edible crops (4.73)
- 2. Improving pollinator & wildlife habitat (4.46)
- 3. Productive use of marginal land (4.4)

Ten participants stated this become more important after the study

Top Barriers

- 1. Lack of infrastructure for post-harvest processing and packaging (4.13)
- 2. Time and labor requirements (3.8)
- 3. Three tied (3.6)
 - »Lack of markets
 - »Lack of harvesting equipment
 - »Unfamiliarity with products/enterprises

Continuing to move forward

Future Work

- Field days and work with extension
- Long-term Field Trials with Select Participants
- Planning and Management Guide

Research needed

• Building lots of Markets

» "I would, if there was a market"

- Harvest machinery adapted to common systems (species mixing)
- Improving funding opportunities for systems

Why should the general public care about agroforestry design?

Marginal lands offer significant returns

- 7% of land was classified as marginal and suitable for MPCs
- 56% reduction in soil erosion by converting to MPCs

(Mattia et al. 2017, In review)

Marginal soils identified (Source: Mattia et al. 2017, In review)

Rethinking how we do "conservation"

#1 practice in Illinois is CP1Establishment of Permanent
Introduced Grasses and Legumes
(176,656 acres)

Total CRP for Illinois as of May 2017

# of	#of	Total	Total	Avg.
contracts	farms	acres	rental \$	rental/acre
78,748	43,678	895,862	\$161,815,000	

CRP monthly summary – May 2017, USDA

For this study:

- Average time spent per farmer roughly 10 hrs.
 - » Each farmer costs \$500

Cost to design agroforestry on all Illinois CRP farms = \$21,839,000

This is a one time investment, <u>CRP is each year</u>

Acknowledgments

Funding and support

- United States Department of Agriculture
- The University of Illinois at Urbana-Champaign (UIUC)

Research and design

- All of the MPCs study participants
- Dawei Huang
- Matt Wilson
- Chloe Mattia

Expertise and outreach

- Jay Hayek, Doug Gucker, and all of the UIUC Extension
- The Institute for Sustainable Energy and Environment at UIUC
- Savanna Institute

